Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.

نویسندگان

  • Patricia M Schulte
  • Timothy M Healy
  • Nann A Fangue
چکیده

Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floral reflectance, color, and thermoregulation: what really explains geographic variation in thermal acclimation ability of ectotherms?

Adaptive phenotypic plasticity in thermally sensitive traits, that is, thermal acclimation, generally increases with increasing latitude and altitude. The presumed explanation is that high-latitude/altitude organisms have evolved greater acclimation ability because of exposure to greater temperature fluctuations. Using a conceptual model of the thermal environment during the reproductive season...

متن کامل

Generalist–specialist trade-off during thermal acclimation

The shape of performance curves and their plasticity define how individuals and populations respond to environmental variability. In theory, maximum performance decreases with an increase in performance breadth. However, reversible acclimation may counteract this generalist-specialist trade-off, because performance optima track environmental conditions so that there is no benefit of generalist ...

متن کامل

Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves.

Ectothermic animals exhibit two distinct kinds of plasticity in response to temperature: Thermal performance curves (TPCs), in which an individual's performance (e.g., growth rate) varies in response to current temperature; and developmental reaction norms (DRNs), in which the trait value (e.g., adult body size or development time) of a genotype varies in response to developmental temperatures ...

متن کامل

The Antagonistic Effect of Raised Salinity on the Aerobic Performance of a Rocky Intertidal Gastropod Nassarius deshayesianus (Issel, 1866) Exposed to Raised Water Temperature

Rocky intertidal organisms are facing pronounced fluctuations in environmental conditions even at small spatial and temporal scales. This heterogeneous habitat is a proper model system to investigate effects of physical parameters and their interactions on physiological performances of marine organisms. In the intertidal zone (especially in tidal pools), the temperature and salinity usually inc...

متن کامل

Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long‐ and short‐term phenotypic plasticity

Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2011